Science and Technology
publicado em 28/08/2013 às 10h30:00
   Dê o seu voto:

Blood test detects risk of rejection after organ transplantation

New technology monitors marker released into the bloodstream by cells of the transplanted organ dying

 
font size
A-
A+

A recently reported blood test for the early detection of organ transplant injury could enable more timely therapeutic intervention in transplant patients and thus help to avoid longer term damage. As described by scientists at the University Medical Center Göttingen and Chronix Biomedical, a molecular diagnostics company, the new method uses Bio-Rad Laboratories' Droplet Digital PCR (ddPCR™) technology to overcome the obstacles of earlier tests, which were both time-consuming and costly. The method was presented at the American Association of Clinical Chemistry (AACC) 2013 annual meeting and has been accepted for publication in Clinical Chemistry.

Approximately 28,000 organ transplantations (known as grafts) are performed each year in the U.S., with another 100,000 patients on waiting lists. However, transplant patients are often subject to organ rejection: acute rejection of liver transplants within three years is nearly 22 percent, while heart and lung rejection is close to 50 percent. In addition, nearly half of all of kidney transplants fail within 10 years.

Graft-derived cell-free DNA (GcfDNA) in the circulation of transplant recipients is a potential rejection biomarker. But previous attempts to determine GcfDNA, which require parallel sequencing of donor and recipient DNA, are expensive and require a long turnaround and use of donor DNA. University Medical Center Göttingen and Chronix Biomedical researchers sought to develop a new method in an attempt to address these drawbacks.

Using ddPCR for Fast, Cost-Effective Test

The researchers applied Bio-Rad's ddPCR technology to quantify graft-derived cfDNA in recent liver transplant patients and in stable patients who had undergone a transplant procedure more than six months earlier. ddPCR technology allowed them to develop a cost-effective and fast laboratory test that detects cfDNA being released into the blood stream by dying cells from the transplanted organ.

"GcfDNA from dying graft cells are the most direct and sensitive indicator of organ rejection and we needed an instrument that could measure it," said Chronix Biomedical's Chief Technology Officer and the study's senior author, Ekkehard Schuetz, MD, PhD. "ddPCR added an additional level of reliability and precision to traditional PCR."

Sequencing methods typically require batch sampling, but by using ddPCR, researchers are able to run single samples. Additionally, this method is reducing test time from three days or more to one day and costs by 90 percent. The study authors were able to address the need for donor DNA by preselecting SNPs that ensure enough heterogeneity between donor and recipient. The new blood test can also deliver results up to several days before the conventional aspartate aminotransferase (AST) and bilirubin tests for liver transplantation rejection, with the potential for an immediate positive impact on patient care.

"We will now be able to detect subclinical rejection and early intervention may allow us to avoid a full-blown rejection," said Michael Oellerich, M.D., FACB, FRCPath and Lower Saxony Distinguished Professor of Clinical Chemistry at the University Medical Center Göttingen and study Principal Investigator. "This test may be useful to personalize immunosuppression and to improve long-term outcomes."

"Detecting non-host cfDNA is the third example for the commercial potential of cfDNA diagnostics. Researchers will now be able to extend the applications from fetal cfDNA in maternal blood and personalized biomarkers for minimal residual disease in cancer to solid organ transplantation," said Howard Urnovitz, PhD, Chronix Biomedical's Chief Executive Officer.

"We are looking forward to the improvements in precision medicine we can offer with ddPCR and this example in transplantation highlights the diagnostic value for the technology," said Paula Stonemetz, Director Diagnostic Business Development, Digital Biology Center, Bio-Rad Laboratories.

The researchers were awarded a National Academy of Clinical Biochemistry (NACB) Distinguished Abstract Award at the 2013 AACC annual conference. The results are part of a larger planned study to determine if cfDNA is the earliest indication of a transplant organ rejection.

Source: Isaude.net
  • Share this pageShare this page
  • Share this pageCorrect
  • ShareShare
  • AlertAlert
Reduced link: 
  • You are recommending this story: Blood test detects risk of rejection after organ transplantation
  • Fill in the following form to send your recommendation to your friend:

  • You are suggesting a correction for this story: Blood test detects risk of rejection after organ transplantation


Receba notícias do iSaúde no seu e-mail de acordo com os assuntos de seu interesse.
Seu nome:
Seu email:
Desejo receber um alerta com estes assuntos:
Blood test    organ transplantation rejection    University Medical Center Göttingen   
Comments:
Comment
Leave your comment
Close
(Required fields are marked with an *)

(Your email address will never be published or shared.)

Enter the letters and numbers below and click in the button "send"

  • Twitter iSaúde
advertising
Informe Saúde printed version

Recommend the portal
Close [X]
  • You are recommending this story: http://www.isaude.net
  • Fill in the following form to send your recommendation to your friend:

RSS news from the portal  iSaúde.net
Get the newsletter of the portal  iSaúde.net
Recommend the portal iSaúde.net
News from  iSaúde.net in your blog or website.
Get news on the subject of your interest.
© 2000-2011 www.isaude.net Todos os direitos reservados.